Maximum likelihood estimation for tensor normal models via castling transforms

نویسندگان

چکیده

Abstract In this paper, we study sample size thresholds for maximum likelihood estimation tensor normal models. Given the model parameters and number of samples, determine whether, almost surely, (1) function is bounded from above, (2) estimates (MLEs) exist, (3) MLEs exist uniquely. We obtain a complete answer both real complex One consequence our results that sure boundedness log-likelihood guarantees existence an MLE. Our techniques are based on invariant theory castling transforms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Maximum-likelihood estimation for hidden Markov models

Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...

متن کامل

Maximum-Likelihood Circle-Parameter Estimation via Convolution

In this paper, we present an interpretation of the Maximum Likelihood Estimator (MLE) and the Delogne-Kåsa Estimator (DKE) for circle-parameter estimation via convolution. Under a certain model for theoretical images, this convolution is an exact description of the MLE. We use our convolution based MLE approach to find good starting estimates for the parameters of a circle, that is, the centre ...

متن کامل

Maximum Likelihood Estimation in Network Models

We study maximum likelihood estimation for the statistical model for both directed and undirected random graph models in which the degree sequences are minimal sufficient statistics. In the undirected case, the model is known as the beta model. We derive necessary and sufficient conditions for the existence of the MLE that are based on the polytope of degree sequences, and wecharacterize in a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Sigma

سال: 2022

ISSN: ['2050-5094']

DOI: https://doi.org/10.1017/fms.2022.37